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Spheres and prolate and oblate ellipsoids from an analytical solution
of the spontaneous-curvature fluid-membrane model
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An analytic solution for the Helfrich spontaneous curvature membrane model@H. Naito, M.Okuda, and
Ou-Yang Zhong-Can, Phys. Rev. E48, 2304~1993!; 54, 2816~1996!#, which has the conspicuous feature of
representing a circular biconcave shape, is studied. Results show that the solution in fact describes a family of
shapes, which can be classified as~i! a flat plane~trivial case!, ~ii ! a sphere,~iii ! a prolate ellipsoid,~iv! a
capped cylinder,~v! an oblate ellipsoid,~vi! a circular biconcave shape,~vii ! a self-intersecting inverted
circular biconcave shape, and~viii ! a self-intersecting nodoidlike cylinder. Among the closed shapes~ii !–~vii !,
a circular biconcave shape is the one with a minimum of local curvature energy.@S1063-651X~99!00309-8#

PACS number~s!: 87.16.Dg, 46.70.Hg, 68.15.1e, 02.40.Hw
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I. INTRODUCTION

Why red blood cells under normal physiological cond
tions take a circular biconcave shape~CBS! but not a spheri-
cal shape aroused the long standing curiosity of human
ings since its first discovery in the 17th century. Toda
physicists ascribe it to the minimization of the bending e
ergy of a flexible lipid bilayer membrane consisting of am
phiphilic molecules. The first successful model revealing
morphology was due to Canham@1# in 1970. However, his
theory suffered from the shortcoming that the membrane
assumed to consist of the two identical labile surfaces,
both chemical and physical environments between the
sides of the membrane were assumed to be identical too
overcome the shortcoming, Helfrich in 1973 introduced
phenomenological parameter, namely, the spontaneous
vature, in describing more realistic situations: the asymme
of the two leaflets of the membrane and the chemical or/
physical differences between the interior and exterior me
brane @2#. As expected, this model gave more abund
shapes than that of Canham. Based on the numerical inte
tion technique@3#, the Helfrich spontaneous curvature mod
yielded a catalog of axisymmetric vesicle shapes: the C
the prolate and oblate ellipsoid, etc. More than ten ye
later, the general equilibrium equation was derived by p
forming the variation of the Helfrich energy functional@4#.
The first triumph of the equation was the prediction of t
existence of a Clifford torus shaped membrane@5# and its
subsequent experimental verification@6#. In 1993, a genera
equation in the axisymmetric case was obtained, and it
complicated third order nonlinear differential equation@7#.
An analytical solution capable of representing the CBS@8#
was immediately obtained. In the same year, the first inte
of the third order nonlinear differential equation was foun
then the equation reduced to a second order one involvin
constant of integrationC @9#. An interesting fact is that an
analytical solution requires a nonvanishing value ofC @8,9#,
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whereas only the special case of a second order differe
equation with C50 has been well studied by numeric
methods@10#. In 1996, the solution was used to explain t
experimentally observed polygonal shape transformation
the CBS@11#. Studies in this paper will show that this solu
tion actually represents a family of shapes, but, in this fa
ily, CBS’s have lower energies and one CBS has the low
For convenience, we will call this solution the CBS solutio
hereafter.

The existence of the analytical CBS solution in the H
frich model proves to be remarkable, because analytical
lutions to a nonlinear theory are rare and precious@12#. In
very special cases ofc05dp5l50 @cf. following Eq. ~1!#,
the Helfrich energy functional reduces to that for const
curvature surfaces and Willmore surfaces@13#, and all
known analytical solutions having physical applications
membrane shapes are Delaunay surfaces, a sphere, a
@13#, and no others@14#. Therefore a systematic study of th
CBS solution is necessary. We will find that there are ei
types of shapes involved in the solution, and that the
closed shapes can be grouped into prolate or oblate ellip
branches. These two branches are bifurcated from a sph

This paper is organized as follows. In Sec. II, how
obtain the CBS solution from the Helfrich model is outline
In Sec. III, all typical shapes contained in the CBS soluti
are plotted and their parametrizations are presented. In
IV, a systematic analysis of the CBS solution is given. In t
shape family, there is a shape with a minimum energy, an
Sec. V this shape is found from the the scale invariance
the local curvature energy. In Sec. VI, a comparison of o
results with previous experimental and theoretical result
given. In Sec. VII, a brief conclusion is given.

II. HELFRICH SPONTANEOUS CURVATURE MODEL
AND ITS CBS SOLUTION

Equilibrium shapes of phospholipid vesicles are assum
to correspond to the minimum of the elastic energy of
closed bilayer membrane. The energy functional of the H
frich spontaneous curvature model reads@2#
3227 © 1999 The American Physical Society
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F5 1
2 kE ~c11c22c0!2dA1dpE dV1lE dA, ~1!

wheredA anddV are the surface area and volume elem
for the vesicle, respectively,k is an elastic modulus,c1 and
c2 are the two principal curvatures of the surface, andc0 is
the spontaneous curvature that describes the possible a
metry of the bilayer membrane. Whenc0 is zero, the Hel-
frich model reduces to the Canham model@1#. The Lagrange
multipliers dp andl take account of the constraints of co
stant volume and area, which can be physically underst
as the osmotic pressure between the ambient and the int
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environments and the surface tension, respectively. The
eral equilibrium shape equation is@4#

dp22lH1k~2H1c0!~2H222K2c0H !12k¹2H50,
~2!

where ¹25(1/Ag)] i(g
i j Ag] j ) is the Laplace-Beltrami op-

erator, g is the determinant of the metricgi j and gi j

5(gi j )
21, K5c1c2 is the Gaussian curvature, andH

52(1/2)(c11c2) is the mean curvature. Assuming that th
shape has axisymmetry, the general shape equation~2! be-
comes a third order nonlinear differential equation@7#
cos3cS d3c

dr3 D 54 sinc cos2cS d2c

dr2 D S dc

dr D2 coscS sin2c2
1

2
cos2c D S dc

dr D 3

1
7 sinc cos2c

2r S dc

dr D 2

2
2 cos3c

r S d2c

dr2 D 1Fco
2

2
2

2co sinc

r
1

l

k
2

sin2c22 cos2c

2r 2 G
3coscS dc

dr D1Fdp

k
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l sinc

kr
1

co
2 sinc

2r
2

sin3c12 sinc cos2c

2r 3 G , ~3!
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where r is the distance from the symmetricz axis of the
rotation, andc(r ) is the angle made by the surface tange
and ther axis, as shown in Fig. 1. The positive direction
the angle is that of the angle measured clockwise from thr
axis. This is contrary to the usual mathematical conventi
therefore, the mean curvatureH is 2 1

2 (sinc/r1dsinc/dr),
in which c15 sinc/r denotes the principal curvature alon
the parallels of the latitude, andc25d sinc/dr denotes that
along those of the meridian. It is worth mentioning that t
spontaneous curvaturec0 carries a sign. When the normal o
a surface change its direction,c1 ,c2 and c0 must change
their signs simultaneously. Keeping the directions ofr andz
as usual, we have, consequently,

FIG. 1. Sign convention. Four arrows mean positive directio
for the rotational axisz and the radial axisr, the tangent anglec,
and the arclengths, respectively. At the north pole both the a
clengths and the tangent anglec take zero values.
t

;

dz/dr52tanc~r !,

z~r !2z~0!52E
0

r

tanc~r !dr, ~4!

n5~sinc cosf,sinc sinf,cosc!,

where n denotes the normal of the surface andf the azi-
muthal angle.

For self-consistency, the positive direction of the a
clengths along the contour in ther -z plane must necessarilly
start from the north pole of the shape. If so, we see that
parametrization for the sphere is sinc(r)5r/R0, where R0
.0 is the radius of the sphere, and our sign convention u
in this paper is then compatible with that used in most p
vious works@3,7,10#. The third order nonlinear differentia
equation~3! can be simplified to be a second order one@9#

cos2c
d2c

dr2
2

sin~2c!

4 S dc

dr D 2

1
cos2c

r

dc

dr
2

sin~2c!

2r 2

2
dpr

2k cosc
2

sinc

2 cosc S sinc

r
2c0D 2

2
lsinc

k cosc

5
C

r cosc
, ~5!

where C is a constant of integration. This is still a rath
complicated equation and does not belong to any known t
of well-studied differential equation in mathematics.

Under the conditions that both the surface tensionl and
the osmotic pressure differencedp are zero, i.e.,

s
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l5dp50, ~6!

an analytic CBS solution for the Eq.~3! @8,11#, or Eq. ~5!
with C52c0, is

sinc5r /R01c0r ln r ,

or, equivalently, ~7!

sinc5c0r ln~r /r m!,

whereR0 is an arbitrary constant andr m5 exp„21/(c0R0)….
When we first obtained this solution@8,11#, we concentrated
on the fact that it can be used to represent the CBS of typ
red blood cells@11#. In fact, by adjusting a parameterc0 in
the interval (2`,`), formula ~7! can give a family of
shapes, which is what we are going to analyze in detail.
the sake of convenience, we mainly use the first form of
CBS solution~7! with R051.

III. ALL POSSIBLE SHAPES IN THE CBS SOLUTION

Before presenting the shapes, we would like to make
comments on how to characterize them. First, for each sh
we will give both the parametrization and the interval ofr
P@0,̀ ) in which the shape appears. This is because th
may be different shapes represented by the same param
zation in distinct intervals ofr P@0,̀ ) as long asusinc(r)u
<1 is satisfied in the intervals. Second, as the scale inv
ance will be fully studied in Sec. V, we will follow the usua
usage@10# to give, for each shape, the scale invariantc0r s ,
in which r s5AA/4p, with A denoting the area of the surfac
of the shape. Unless specifically mentioned and discusse
is always implied that the normals of the surface point o
ward for closed shapes. All possible types of shapes re
sented by Eq.~7! are listed in the following.

~i! The flat plane~trivial case! with c0r s50:

sinc50, r P@0,̀ #. ~8!

~ii ! The sphere withc0r s50:

sinc5r /R0 , r P@0,R0#. ~9!

~iii ! The prolate ellipsoid. A typical shape withc0r s5
20.72 is shown in Fig. 2~a!, and one of its parametrization
is

sinc5r 20.6r ln r , r P@0,1#. ~10!

Another parametrization representing the same shap
sinc5r21.85r ln r, r P@0,0.324#. The parametrization sinc
5r14.063r ln r, r P@0,0.148# represents the same shape b
with an inward pointing normal.

~iv! The capped cylinder. A typical shape withc0r s5
22.06 is shown in Fig. 2~b!, and one of its parametrization
is

sinc5r 20.99r ln r , r P@0,1#. ~11!

Another parametrization representing the same shap
sinc5r21.01r ln r, r P@0,0.980#. The parametrization sinc
5r13.5913r ln r, r P@0,0.275# represents the same sha
but with an inward pointing normal.
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~v! The oblate ellipsoid. A typical shape withc0r s
50.46 is shown in Fig. 2~c! and its parametrization is

sinc5r 10.5r ln r , r P@0,1#. ~12!

~vi! The CBS. A typical shape withc0r s51.51 is shown
in Fig. 2~d!, and its parametrization is

sinc5r 11.8r ln r , r P@0,1#. ~13!

~vii ! The self-intersecting inverted CBS. A typical sha
with c0r s52.72 is shown in Fig. 2~e!, and its parametrization
is

sinc5r 13.2r ln r , r P@0,1#. ~14!

We note that, in this case, the outside of this shape can
defined but we cannot let the normal always point outw

FIG. 2. The nontrivial shapes in the CBS solution: the prol
ellipsoid ~a!, the capped cylinder~b!, the oblate ellipsoid~c!, the
CBS ~d!, the self-intersecting inverted CBS~e!, and the self-
intersecting nodoidlike cylinder~f!.



e

-

l-
e
c

e

nl
am

.
ap
th
e
ai

n
a-

c
in
bi
if

of

o

r-

r
f

d
-

nch,

in
l

r-
to
rd

p-

nd

the
s
mi-

a-

ith

yl-

e

3230 PRE 60LIU, HAIJUN, LIU, AND ZHONG-CAN
using a single parametrization@Eq. ~14!#. The normal of the
parametrization@Eq. ~14!# points outward only at the surfac
of the torus part.

~viii ! The self-intersecting nodoidlike cylinder. This situ
ation was discussed in a previous paper@12#. We add a typi-
cal figure@Fig. 2~f!# in this paper for completeness. The cy
inder is infinitely long with periodic packing, along th
rotational axis, of a basic unit in which self-intersecting o
curs once. We plot the basic unit only. We use the surfac
the basic unit to calculater s , and the shape hasc0r s53.28.
Its parametrization is

sinc5r 13.60r ln r , r P@0.301,1#. ~15!

The normal of this parametrization also points outward o
at the surface of the torus part also. We note that the s
parametrization sinc5r13.60r ln r in interval r P@0,0.257#
gives a capped cylinder, but that its normal points inward

These eight shapes consist of all possible types of sh
contained in the solution. From the parametrizations of
these shapes, one may note two facts that the spontan
curvatures of all shapes are within a very narrow dom
instead of an infinite domain ofc0P(2`,`), and that a
single shape may have different parametrizations. Expla
tions of these facts will be given in Sec. IV by both qualit
tive and quantitative studies of the CBS solution.

IV. QUANTITATIVE STUDY OF SHAPES
IN THE CBS SOLUTION

All the closed shapes~ii !–~vii ! presented in Sec. III can
be grouped into two branches: A prolate ellipsoid bran
including ~ii !–~iv! shapes, and an oblate ellipsoid branch
cluding ~ii ! and ~v!–~vii ! shapes; these two branches are
furcated from a sphere~ii !. This is easily understandable
looking into the CBS solution~7! sinc5r/R01c0r ln r. When
R0.0 andc050, this form gives nothing but a sphere
radius R0. Then, whenc0 is a small quantity, positivec0
leads to an oblate ellipsoid and negativec0 leads to a prolate
ellipsoid, respectively. The case whenc0 is large is not so
evident, and needs some reasoning.

To analyze howc0 affects the shapes and the intervals
r such thatusinc(ru<1, we use the parametrization sinc5r
1c0r ln r, and sketch the relation of sinc with positivec0 vs
r in Fig. 3. From this figure, we see that sinc5r1c0r ln r is
a single-valued and monotonous function ofr; it reaches its
extremum at pointr 2, which satisfies

FIG. 3. The relation of sinc(r) vs r and the intervals where th
shapes appear. When 0,c0,cr and21,sinc(r2),0, shapes ap-
pear in @0,r 4#. When c0>cr and sinc(r2)<21, shapes appear in
two distinct intervals@0,r 1# and @r 3 ,r 4#.
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511c01c0 ln r 250,i .e.,r 25expS 2

11c0

c0
D .

~16!

The extremum value of sinc(r2) is

sinc~r 2!52r 2c052c0 expS 2
11c0

c0
D , ~17!

which is negative for positivec0, and vice verse. Taking
positivec0 as an example in Fig. 3, corresponding to diffe
ent c0’s, shapes can appear in different intervals ofr. There
are three different cases ofc0P@0,̀ ). ~i! Whenc0 is critical
such that sinc(r2)521, we havec05cr'3.591 12 from Eq.
~17!. The meridian principal curvature vanishes at pointr 2 as
c25dsinc/dr50: it is the unphysically infinitely long
capped cylinder with radiusr 251/c050.278 from Eq.~17!.
~ii ! Whenc0,cr , we have sinc(r2).21 and shapes appea
in one interval@0,r 4# in which r 4 are the equatorial radii o
the shapes such that sinc(r4)51. Along the increase ofr
from 0 tor 4, the tangent anglec(r ) decreases from zero an
reaches its minimum at pointr 2, then increases monoto
nously and reaches its maximum valuec5p/2 at pointr 4.
These shapes certainly belong to the oblate ellipsoid bra
and their normals point outward from Eq.~4!. ~iii ! When
c0.cr , we have sinc(r2),21, and shapes can appear
two distinct intervals@0,r 1# ~with r 1 being the equatoria
radii of the shapes such that sinc(r1)521) and@r 3 ,r 4#, be-
cause in both intervalsusinc(r)u<1 is satisfied. In interval
@0,r 1#, the tangent anglec(r ) decreases from zero and te
minates atc(r 1)52p/2. These shapes certainly belong
the prolate ellipsoid branch, but the normals point inwa
since 21<sinc(r)<0 holds for the whole intervalr
P@0,r 1#. In a distinct interval@r 3 ,r 4#, numerical studies
show that only the self-intersection nodoidlike cylinder a
pears.

In fact, using the parametrization sinc5r/R01c0r ln r,
each shape with ac0 outside the domain (21,cr) can be
found be identical, with a value ofc0 within the domain
(21,cr). To demonstrate this fact, we resort to the seco
form of the CBS solution sinc5c0r ln (r/rm) in Eq. ~7!. Two
parametrizationsc0r ln (r/rm) and2c0r ln(r/rm) represent the
same shape, but the normal of one is opposite that of
other’s from Eq.~4!. If we require that the normal point
outward, one of these two parametrizations must be eli
nated. Furthermore we have a simplified form

sinc5c0r ln~r /r m!5~c0r m!~r /r m!ln~r /r m!5c08x ln x
~18!

where x5r /r m is the dimensionless length, andc085c0r m

5c0 exp„21/(c0R0)… is a dimensionless spontaneous curv
ture. One can find thatc08 in two separate domainsc08
P(2`,2e) and c08P@0,e), in which e is the base of the
natural logarithm, suffice to give all possible shapes w
normals pointing outward in the CBS solution. Whenc085
6e, the shapes are unphysically infinitely long capped c
inders. From the relationc085c0 exp„21/(c0R0)…, and letting
R051, all shapes can be mapped into a single domainc0
P(21,cr) in parametrization sinc5r/R01c0r ln r. This is
why only a few shapes of spontaneous curvaturec0 within a
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narrow domain in Sec. III are sufficient to give all possib
types of shapes in the CBS solution, i.e., why each sh
with a c0 outside the domain (21,cr) can be found to be
identical, with a value ofc0 within the domain (21,cr).

In addition to the above qualitative analyses, a numer
method will be used to characterize the shapes in the w
domain c0P(2`,`) quantitatively. We introduce two ra
tios, a semiaxis ratioz(r 0)/r 0 and a reduced radius rati
r v /r s . The so-called semiaxis ratioz(r 0) is defined by half
of the distance of two poles of a vesicle in the symmetri
axis z, which is

z~r 0!2z~0!52E
0

r 0
tanc~r !dr, ~19!

where r 0 is the equatorial radius of the vesicle satisfyi
sinc(r0)561. The ratiosz(r 0)/r 0 are plotted by dashed
lines in Fig. 4. In Fig. 4~b!, c0 approaches21 andcr , and
the ratio z(r 0)/r 0 approaches infinity: the shapes are in
nitely long capped cylinders with radii of 1 and 0.278, r
spectively. Whenc0 increases from21 to cr , the ratio de-
creases monotonically. In sequence we have a cap
cylinder, a prolate ellipsoid and a sphere of unit radius
c050, an oblate ellipsoid with a small positivec0, a CBS
whose center touches atc052.4288, and a self-intersectin
inverted CBS. From Figs. 4~a! and 4~c!, we clearly see tha
whenc0,21 or c0.cr , the ratiosz(r 0)/r 0 are greater than
1. In sequence we have a capped cylinder, a prolate ellips
and a quasisphere with increasinguc0u. When uc0u ap-
proaches infinity, the constraintusinc(r)u<1 means thatr 1
~cf. Fig. 3!, must be very small. Thus we have approximat
sinc(r).7c0r for positive and negativec0’s, respectively,
using theL8 Hospital method. This implys that we will agai
have a sphere. All these shapes are closed, and appe
intervals ofr including the pointr 50, which are physically
interesting and are plotted in Fig. 4. Whenc0,21 or c0
.cr , in intervals @r 3.0,r 4# ~cf. Fig. 3!, we have self-
intersecting nodoidlike cylinders, which are less physica
interesting and which have not been plotted in Fig. 4.
pointed out in Ref.@12#, along with the increasinguc0u, the
number of self-intersections the in unit length increases,
the unit length approaches a quasitorus asuc0u approaches̀ .
In fact, when21,c0<0, self-intersecting nodoidlike struc
tures also appear in the intervals@r 3.0,r 4#, but, along with
the decreasinguc0u, the number of self-intersections in th
unit length increases.

The second ratio isr v /r s , in which r v is defined by the
radius of a sphere having the same volumeV as a vesicle,
andr s by the radius of a sphere having the same areaA as a
vesicle. The volumeV and areaA are

V54pE
0

r 0 r „z~r !2z~0!…

cosc
dr, ~20!

A54pE
0

r 0 r

cosc
dr. ~21!

Undoubtedly, we haver v /r s<1, and the equality holds fo
the sphere only. The ratio is plotted by dot-dashed lines
Fig. 4.
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FIG. 4. The energy~thick solid line!, the scale invariantc0r s

~thin solid line!, and two ratiosz(r 0)/r 0 ~dashed line! and r v /r s

~dot-dashed line!, in three domains27<c0<21.2 ~a!, 20.98
<c0<3.5 ~b!, and 3.6<c0<7 ~c! for closed shapes. The bendin
elastic modulusk used to scale the energy of a sphere to unit.
quantities in four curves are dimensionless. In order to see cle
the fact that a shape with an exclusive value ofc0P(2`,21) and
a shape with an exclusive value ofc0P(cr ,`) are identical except
that the normals point inward and outward, respectively, in the
figure ~c! we plot bothc0r s ~above thec0 axis! and2c0r s ~below
the c0 axis! by the same thin solid lines. We can also see that
shapes withc0P(2`,21) and c0P(cr ,`) have corresponding
identical the shapes withc0P(21,0). A single domainc0

P(21,cr) thus suffices to give all the shapes.
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The scale invariantc0r s is plotted by thin solid lines in
Fig. 4. In Fig. 4~c!, we plot bothc0r s ~above thec0 axis! and
2c0r s ~below thec0 axis! by the same thin solid lines, in
order to see the fact that each shape with ac0P(2`,21) is
identical to a shape with ac0P(cr ,`), and vice versa. How-
ever, the normals of shapes parametrized by sinc5r
1c0r ln r with c0P(cr ,`) point inward. From both qualita
tive and quantitative studies in this section, we can draw
conclusion that all possible closed shapes in the CBS s
tion ~8! are, along withc0 increasing from21 to cr , a
capped cylinder, a prolate ellipsoid, a sphere, an oblate e
soid, a CBS, and a self-intersecting inverted CBS.

V. SCALE INVARIANCE OF THE ENERGY
AND THE SHAPE WITH MINIMUM ENERGY

An important property of the local curvature energy is
scale invariance. This energy does not depend on the siz
the vesicle but only on its shape@10#. If R is a solution
with a local curvature energy, the rescaled shapeR
→R/k with k.0, and consequently (c1 ,c2 ,c0 ,dA)
→(kc1 ,kc2 ,kc0 ,dA/k2), is also a solution with the sam
local curvature energy. Two parametrizations of the C
solution ~8! having manifest scale invariance are

sinc~r !5r /R01c0r ln~r /r 0! and

sinc~r !5c0r ln~r /r 0!, ~22!

in which r 0 is a constant with length unit asr or R0. It is
evident that the two productsc0r s and c0r v are two scale
invariants independent of a particularly chosen parametr
tion. We used two particular parametrizations, sinc(r)
5r/R01c0r ln r and sinc(r)5c0r ln r, to search for the mini-
mum energy shape. Both give the same resultsc0r s51.04
andc0r v51.00. The minimum energy is 0.480; hereafter w
take the energy of the sphere, 8pk, as the energy unit. Sur
prisingly, the CBS with a center touching atc052.4288 has
an energy 1.00. In Fig. 4~b!, the thick solid line shows tha
there is an energy minimum shape withc051.200: it is a
CBS. In general, oblate ellipsoids including the CBS hav
lower energy than other shapes, including the sphere,
prolate ellipsoid, and the self-intersecting inverted CBS.

VI. COMPARISON OF OUR RESULTS
WITH THE PREVIOUS EXPERIMENTAL

AND THEORETICAL RESULTS

All previous numerical studies concentrated on the so
tion of the equation whenC50 of Eq. ~5!, and the obtained
shapes@10,16# included all eight shapes mentioned abov
All these eight shapes except the self-intersecting cases
been observed in the laboratory@15–17#.

Since our solution belongs to the situationCÞ0 of Eq.
~5!, our results coincide with the known theoretical results
one respect, but differ from in another. First, our approa
supports the conclusion that prolate ellipsoids may hav
higher energy than the oblate ones have@4#. However, the
standard instability analysis of a sphere starts from a slig
deformed sphere of parametrized formr 5R0
1(almYlm(u,f), where alm is a set of small parameter
corresponding to spherical harmonicsYlm(u,f). For small
e
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a
he

-
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ve

h
a

ly

alm , for example, the only nonvanishinga2,0 satisfying
ua2,0u!R0/2, the ellipsoids haveC` contour curves. But our
ellipsoids have onlyC1 contour curves, We must stress th
the C1 continuity suffices to ensure that the membranes
free from any force acting on any point. The second deri
tive of z(r ) with respect tor is singular at pointr 50. One
may feel uneasy about this singularity. In fact, it relates
energy density only, and the total energies (1/2)k*(c11c2
2c0)2dA are limited, as shown in Fig. 4. Second, the in
nitely long capped cylinders appear whenc0521 and c0
5cr , and they correspond to infinite energy states, as sh
by thick solid lines in Figs. 4~a!–4~c!. From our results, the
phases between the two sides ofc0521 and c05cr are
separate. The lattercr distinguishes an oblate ellipsoid pha
and a prolate ellipsoid phase; this is the same situation a
the known phase diagram@10#. However whenc0 changes
from c0,cr to c0.cr , the normal changes its direction from
outward pointing to inward pointing. It seems that the me
brane takes a global flip-flop procedure. However, no s
procedure takes place whenc0 changes fromc0,21 to c0
.21, even when the transitions are also discontinuo
Third, an interesting number appeared both in our results
the previous ones:c0R051.200. We see from Fig. 4~b! that
whenc0R051.200, whereR051 in our parametrization, the
CBS has the minimum energy. In the usual instability ana
sis of a sphere via an infinitesimal deformation, the infi
tesimally deformed oblate shape has a lower energy an
more stable than the infinitesimally deformed prolate o
wheneverc0R0,21.2 @4#.

VII. CONCLUSION

An analytical solution for the Helfrich spontaneous cu
vature membrane model@8,11#, which has a conspicuou
feature of representing the circular biconcave shape, is
tematically studied in this paper. Results show that the so
tion in fact describes a family of shapes, which can be cl
sified as~i! a flat plane~trivial case!, ~ii ! a sphere,~iii ! a
prolate ellipsoid@Fig. 2~a!#, ~iv! a capped cylinder@Fig.
2~b!#, ~v! an oblate ellipsoid@Fig. 2~c!#, ~vi! a CBS @Fig.
2~d!#, ~vii ! a self-intersecting inverted CBS@Fig. 2~e!#, and
~viii ! a self-intersecting nodoidlike cylinder@Fig. 2~f!#. All
these shapes have been found in numerical solutions of
~5! with C50 @9#. Except for self-intersecting cases, they
have real correspondencein vitro and in vivo on vesicle
shapes@15–17#. The closed shapes~ii !–~vii ! form two sepa-
rate prolate and oblate ellipsoid branches which are bi
cated from a sphere. The oblate ellipsoids including the C
have a lower energy than the prolate ellipsoids including
sphere, and a CBS withc0r v51.00 has the lowest energy
The usual instability analysis of a sphere leads to the con
sion that the least stable shapes are prolate and oblate
soid branches@4,18#, but to our knowledge this is the firs
time an explicit parametrization has been given to show h
these two branches come out gradually and analytically.
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