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An analytic solution for the Helfrich spontaneous curvature membrane njbddeNaito, M.Okuda, and
Ou-Yang Zhong-Can, Phys. Rev.4B, 2304(1993; 54, 2816(1996], which has the conspicuous feature of
representing a circular biconcave shape, is studied. Results show that the solution in fact describes a family of
shapes, which can be classified (@sa flat plane(trivial case, (i) a spheref(iii) a prolate ellipsoid(iv) a
capped cylinder(v) an oblate ellipsoid(vi) a circular biconcave shapévii) a self-intersecting inverted
circular biconcave shape, afdii) a self-intersecting nodoidlike cylinder. Among the closed shéipesvii),

a circular biconcave shape is the one with a minimum of local curvature ef&8§963-651X99)00309-9

PACS numbgs): 87.16.Dg, 46.70.Hg, 68.15e, 02.40.Hw

[. INTRODUCTION whereas only the special case of a second order differential
equation withC=0 has been well studied by numerical
Why red blood cells under normal physiological condi- methods[10]. In 1996, the solution was used to explain the
tions take a circular biconcave sha@BS) but not a spheri- experimentally observed polygonal shape transformation of
cal shape aroused the long standing curiosity of human behe CBS[11]. Studies in this paper will show that this solu-
ings since its first discovery in the 17th century. Today,tion actually represents a family of shapes, but, in this fam-
physicists ascribe it to the minimization of the bending en-ily, CBS’s have lower energies and one CBS has the lowest.
ergy of a flexible lipid bilayer membrane consisting of am- For convenience, we will call this solution the CBS solution
phiphilic molecules. The first successful model revealing théhereafter.
morpho|ogy was due to Canha[m]] in 1970. However, his The existence of the analytical CBS solution in the Hel-
theory suffered from the shortcoming that the membrane waffich model proves to be remarkable, because analytical so-
assumed to consist of the two identical labile surfaces, aniitions to a nonlinear theory are rare and precipl@. In

both chemical and physical environments between the twde'Y Special cases = 5p=X\=0 [ct. following Eq. (1)],

sides of the membrane were assumed to be identical too. T9€ Helfrich energy functional reduces to that for constant
curvature surfaces and Willmore surfacgk3], and all

overcome the shortcoming, Helfrich in 1973 introduced T}? wiical soluti havi hvsical lcati .
phenomenological parameter, namely, the spontaneous ¢ nown analytical solutions having physical applications In
membrane shapes are Delaunay surfaces, a sphere, a torus

S e e/l an o el Trerefore  ysteatc sy of e
BS solution is necessary. We will find that there are eight

physical differences betwee_n the interior and exterior memfypes of shapes involved in the solution, and that the en-
brane[2]. As expected, this model gave more abundanti,seq shapes can be grouped into prolate or oblate ellipsoid
shapes than that of Canham. Based on the numerical integrgzanches. These two branches are bifurcated from a sphere.
tion techniqud 3], the Helfrich spontaneous curvature model  This paper is organized as follows. In Sec. Il, how to
yielded a catalog of axisymmetric vesicle shapes: the CBSyptain the CBS solution from the Helfrich model is outlined.
the prolate and oblate ellipsoid, etc. More than ten yeargy sec. IIl, all typical shapes contained in the CBS solution
later, the general equilibrium equation was derived by perare piotted and their parametrizations are presented. In Sec.
forming the variation of the Helfrich energy functiond]. v, a systematic analysis of the CBS solution is given. In the
The first triumph of the equation was the prediction of theshape family, there is a shape with a minimum energy, and in
existence of a Clifford torus shaped membrdbgand its  gec. v this shape is found from the the scale invariance of
subsequent experimental verificatiffl. In 1993, a general the |ocal curvature energy. In Sec. VI, a comparison of our
equation in the axisymmetric case was obtained, and it is gegyits with previous experimental and theoretical results is
complicated third order nonlinear differential equatiof. given. In Sec. VII, a brief conclusion is given.

An analytical solution capable of representing the JB§

was immediately obtained. In the same year, the first integral

of the third order nonlinear differential equation was found; Il HELFRICH SPONTANEOUS CURVATURE MODEL

then the equation reduced to a second order one involving a
. . - . . AND ITS CBS SOLUTION
constant of integratior€ [9]. An interesting fact is that an
analytical solution requires a nonvanishing valueCdig, 9], Equilibrium shapes of phospholipid vesicles are assumed

to correspond to the minimum of the elastic energy of the
closed bilayer membrane. The energy functional of the Hel-
*Electronic address: liugh@itp.ac.cn frich spontaneous curvature model reg#lp
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L ) environments and the surface tension, respectively. The gen-
F=§kj (C1+Ca—Co)dA+ 5PJ dV+)\J dA, (1)  eral equilibrium shape equation [i4]

wheredA anddV are the surface area and volume element 8p—2\H+k(2H +co)(2H2—2K —coH) +2kV2H =0,

for the vesicle, respectivel is an elastic modulus;; and (2

c, are the two principal curvatures of the surface, apds B

the spontaneous curvature that describes the possible asymhere V2= (1/\/g)a(g" \/§aj) is the Laplace-Beltrami op-
metry of the bilayer membrane. Whegq is zero, the Hel- erator, g is the determinant of the metrig;; and g"
frich model reduces to the Canham mofiEl The Lagrange =(gij)*1, K=c,c, is the Gaussian curvature, and
multipliers p and\ take account of the constraints of con- = —(1/2)(c,+¢,) is the mean curvature. Assuming that the
stant volume and area, which can be physically understooshape has axisymmetry, the general shape equéijohe-

as the osmotic pressure between the ambient and the interr@mes a third order nonlinear differential equati@ih

c0§¢( %) =4 sinzpcos?zp( ((j:iz_rf) (Z—f) - cos¢( Sirfy— %co&p (Z—lf)a
7singcody (dy\2 2cosy|d2y| [c2 2c,sing N sirfy—2cody
TR a)‘ ‘ (m)*z‘ kK g2
: 2 . .
XCOSJ/(z—IiI N %+ A T(I:]z,b+ cozlrnz,b_ sindy+ 225;|3nz//co§¢// | ®
|
wherer is the distance from the symmetricaxis of the dz/dr=—tany(r),

rotation, andi(r) is the angle made by the surface tangent
and ther axis, as shown in Fig. 1. The positive direction of r
the angle is that of the angle measured clockwise front the z(r)—z(0)= —f tany(r)dr, (4)
axis. This is contrary to the usual mathematical convention; 0
therefore, the mean curvatuke is — 3 (siny/r+dsiny/dr),

in which c,= siny/r denotes the principal curvature along

the parallels of the latitude, argy=d siny/dr denotes that .
along those of the meridian. It is worth mentioning that thev%zir:;nagg?emes the normal of the surface agdhe azi-

spontaneous curvatuoy carries a sign. When the normal of For self-consistency, the positive direction of the ar-

a S.“rf‘."‘ce change its d|rect|onl,_cz and Co mgst change clengths along the contour in the-z plane must necessarilly
their signs simultaneously. Keeping the directions @hdz g2t from the north pole of the shape. If so, we see that the
as usual, we have, consequently, parametrization for the sphere is sifr)=r/R,, where R,
>0 is the radius of the sphere, and our sign convention used
in this paper is then compatible with that used in most pre-
vious works[3,7,10. The third order nonlinear differential

n=(siny cose¢,siny sin ¢,cosy),

z equation(3) can be simplified to be a second order ¢8¢
d?¢  sin(2y) [dy\?2 cogy dy  sin(2y)
cody— — — ] +———
dr? 4 dr rdr 2r2
\‘ ) v spr sing [sing 2 \sing
0 s r " 2kcosy 2cosy| r 0 T kcosy
~oosy’ ©

where C is a constant of integration. This is still a rather
FIG. 1. Sign convention. Four arrows mean positive directionscOmplicated equation and does not belong to any known type

for the rotational axiz and the radial axis, the tangent angles, ~ Of well-studied differential equation in mathematics.

and the arclengtfs, respectively. At the north pole both the ar-  Under the conditions that both the surface tensioand

clengths and the tangent anglg take zero values. the osmotic pressure differendp are zero, i.e.,
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A=6p=0, (6)

an analytic CBS solution for the Eq3) [8,11], or Eqg. (5)
with C=2c,, is

sing=r/Ry+corinr,
or, equivalently, (7)
singr=cor In(r/r,),

whereRy is an arbitrary constant ard,= exp(— 1/(cgRy)).
When we first obtained this solutid8,11], we concentrated

on the fact that it can be used to represent the CBS of typical
red blood cell11]. In fact, by adjusting a parameteg in

the interval (~«,»), formula (7) can give a family of
shapes, which is what we are going to analyze in detail. For
the sake of convenience, we mainly use the first form of the
CBS solution(7) with Ry=1.

Ill. ALL POSSIBLE SHAPES IN THE CBS SOLUTION

Before presenting the shapes, we would like to make two
comments on how to characterize them. First, for each shape,
we will give both the parametrization and the intervalrof
e[0,0) in which the shape appears. This is because there
may be different shapes represented by the same parametri-
zation in distinct intervals of e[0,) as long agsiny(r)|
=<1 is satisfied in the intervals. Second, as the scale invari-
ance will be fully studied in Sec. V, we will follow the usual
usage[10] to give, for each shape, the scale invariegts,
in which r = \A/4s, with A denoting the area of the surface
of the shape. Unless specifically mentioned and discussed, it — /,,77711//,? 22
is always implied that the normals of the surface point out- W
ward for closed shapes. All possible types of shapes repre-
sented by Eq(7) are listed in the following.

(i) The flat plane(trivial case with cors=0:

sing=0, re[0ce]. 8 . . .
4 c[02] ® FIG. 2. The nontrivial shapes in the CBS solution: the prolate
(i) The sphere witleyr =0 ellipsoid (a), the capped cylindetb), the oblate ellipsoidc), the
CBS (d), the self-intersecting inverted CB&), and the self-
sing=r/Ry, re[0Rg]. (9) intersecting nodoidlike cylinde(f).
(i) The prolate ellipsoid. A typical shape wittyrs= (v) The oblate ellipsoid. A typical shape withr

—0.72 is shown in Fig. @), and one of its parametrizations =0.46 is shown in Fig. @) and its parametrization is
is

sing=r—0.6&1Inr, re[0,]. (10) sing=r+0.5 Inr, re[0,1]. (12

Another parametrization representing the same shape is (vi) The CBS. A typical shape withyrs=1.51 is shown

siny=r—1.85 Inr, r €[0,0.324. The parametrization sig  in Fig. 2(d), and its parametrization is

=r+4.063 Inr, r €[0,0.148 represents the same shape but

with an inward pointing normal. sing=r+1.8Inr, re[0,1]. (13
(iv) The capped cylinder. A typical shape withrs=

—2.06 is shown in Fig. @), and one of its parametrizations  (vjj) The self-intersecting inverted CBS. A typical shape

is with corg=2.72 is shown in Fig. @), and its parametrization
sing=r—0.99 Inr, re[0,1]. a1y ®
Another parametrization representing the same shape is sing=r+3.2Inr, re[0,1]. (14

sing=r—1.0Ir Inr, r €[0,0.980. The parametrization sif
=r+3.5913 Inr, r€[0,0.275 represents the same shapeWe note that, in this case, the outside of this shape can be
but with an inward pointing normal. defined but we cannot let the normal always point outward
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. dsinyg ) 1+cg
siny =1+cgtcglnr,=0j.e.,r,=exp —
dr Co

1 (16)

o I T2 I3 T4 T . .
The extremum value of sig(r,) is
-1 ) 1+c
_____ SiNY(r,)=—Tr,Co=—Coexp — , (17)

Co
FIG. 3. The relation of sig{r) vsr and the intervals where the L . . . .
shapes appear. When@,<c, and — 1<sin y(r,)<0, shapes ap- Whl(_:h is negative for positivee,, and vice verse. Takl_ng
pear in[Oy 4]. Whency=>c, and siny{r;)<—1, shapes appear in positivecy as an example in !:|g..3, corre_zspondmg to differ-
two distinct intervald 0] and[rs,r4]. entcy's, shapes can appear in different intervals of here
are three different cases of [ 0,2). (i) Whency is critical

using a single parametrizatidiq. (14)]. The normal of the ~SUCh that sif(rz)=—1, we havec,=c,~3.591 12 from Eq.
parametrizatiofiEq. (14)] points outward only at the surface (17)- The meridian principal curvature vanishes at poinas
of the torus part. C,=dsinyg/dr=0: it is the unphysically infinitely long
(viii) The self-intersecting nodoidlike cylinder. This situ- ¢@PPed cylinder with radius, = 1/co=0.278 from Eq.(17).
ation was discussed in a previous pajit]. We add a typi- (1) Whenco<<c,, we have sin{r;)>—1 and shapes appear
cal figure[Fig. 2(f)] in this paper for completeness. The cyl- ' oné interval[Or 4] in whichr, are the equz;tor|a| radii of
inder is infinitely long with periodic packing, along the the shapes such that sifr,)=1. Along the increase of
rotational axis, of a basic unit in which self-intersecting oc-rom 0 tory, the tangent anglg(r) decreases from zero and
curs once. We plot the basic unit only. We use the surface dféaches its minimum at point,, then increases monoto-

the basic unit to calculate;, and the shape hagr,=3.28. nously and reaches its maximum valye= 7/2 at pointr ,.
lts parametrization is These shapes certainly belong to the oblate ellipsoid branch,

and their normals point outward from E¢4). (iii) When
Co>C,, we have sinfr,)<—1, and shapes can appear in
two distinct intervals[Oy4] (with r,; being the equatorial
radii of the shapes such that si{r;)=—1) and[r3,r,], be-
The normal of this parametrization also points outward onlycause in both intervalfsiny(r)|<1 is satisfied. In interval
at the surface of the torus part also. We note that the san@y,], the tangent angle/(r) decreases from zero and ter-
parametrization sigi=r+3.6Q Inr in interval r €[0,0.257 minates aty(r,)=— m/2. These shapes certainly belong to
gives a capped cylinder, but that its normal points inward. the prolate ellipsoid branch, but the normals point inward
These eight shapes consist of all possible types of shap@mce —1<siny(r)<0 holds for the whole intervalr
contained in the solution. From the parametrizations of the=[0r,]. In a distinct interval[rs,r,], numerical studies

these shapes, one may note two facts that the spontaneostsow that only the self-intersection nodoidlike cylinder ap-
curvatures of all shapes are within a very narrow domairpears.

instead of an infinite domain ofye (—,«), and that a In fact, using the parametrization sis=r/Ry+cyrInr,
single shape may have different parametrizations. Explanasach shape with &, outside the domain<{1c,) can be
tions of these facts will be given in Sec. IV by both qualita- found be identical, with a value af, within the domain

sing=r+3.60 Inr, re[0.301,1. (15)

tive and quantitative studies of the CBS solution. (—1c,). To demonstrate this fact, we resort to the second
form of the CBS solution sigi=cyr In (r/r) in Eq. (7). Two
IV. QUANTITATIVE STUDY OF SHAPES parametrizationsgr In (r/rp,) and —cor In(r/r.)) represent the
IN THE CBS SOLUTION same shape, but the normal of one is opposite that of the

other’s from Eq.(4). If we require that the normal points
All the closed shape§i)—(vii) presented in Sec. Ill can outward, one of these two parametrizations must be elimi-
be grouped into two branches: A prolate ellipsoid branchated. Furthermore we have a simplified form
including (ii)—(iv) shapes, and an oblate ellipsoid branch in-
cluding (i) and (v)—(vii) shapes; these two branches are bi-  sing=cor In(r/r )= (Cor ) (r/r ) IN(r/r ) =cex Inx
furcated from a spheréi). This is easily understandable if (18
looking into the CBS solutio7) sing=r/Ry+cyr Inr. When . ) )
Ro>0 andc,=0, this form gives nothing but a sphere of Wherex=r/ry is the dimensionless length, amg=corpn,
radius Ry. Then, whenc, is a small quantity, positive,  — Co&XP(—1/(CoRo)) is a dimensionless spontaneous curva-
leads to an oblate ellipsoid and negatigleads to a prolate ture. One can find that, in two separate domains,
ellipsoid, respectively. The case wheg is large is not so  €(—%,—€) andcye[0), in which e is the base of the
evident, and needs some reasoning. natural logarithm, suffice to give all possible shapes with
To analyze howe, affects the shapes and the intervals ofnormals pointing outward in the CBS solution. Whej=
r such that/siny(r|<1, we use the parametrization sisr +e, the shapes are unphysically infinitely long capped cyl-
+cor Inr, and sketch the relation of sipwith positivec, vs  inders. From the relation)=c, exp(— 1/(cgRy)), and letting
r in Fig. 3. From this figure, we see that sirr+corinris  Ry=1, all shapes can be mapped into a single donegin
a single-valued and monotonous functionrpft reaches its e (—1,c,) in parametrization sigi=r/Ry+cqriInr. This is
extremum at point,, which satisfies why only a few shapes of spontaneous curvaty&ithin a
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narrow domain in Sec. Il are sufficient to give all possible

types of shapes in the CBS solution, i.e., why each shape 2.
with a ¢, outside the domain<{1,c,) can be found to be
identical, with a value ot within the domain 1.,).

In addition to the above qualitative analyses, a numerical -
method will be used to characterize the shapes in the whole
domaincye (—=,%) quantitatively. We introduce two ra-
tios, a semiaxis rati@(ry)/ro and a reduced radius ratio
r,/rs. The so-called semiaxis ratizr{r ) is defined by half -6 -5 -4 -3 co

of the distance of two poles of a vesicle in the symmetrical -0.5
axis z, which is

(a)
z(ro)—z(0)=—footamp(r)dr, (19 ar

wherer, is the equatorial radius of the vesicle satisfying
siny(ro)==1. The ratiosz(ry)/r, are plotted by dashed '
lines in Fig. 4. In Fig. 4b), cq approaches-1 andc,, and i
the ratio z(ry)/r, approaches infinity: the shapes are infi- i
nitely long capped cylinders with radii of 1 and 0.278, re- \
spectively. Whert, increases from-1 to ¢, , the ratio de- \ 2}
creases monotonically. In sequence we have a capped g
cylinder, a prolate ellipsoid and a sphere of unit radius at

Co=0, an oblate ellipsoid with a small positivg, a CBS 3
whose center touches a§=2.4288, and a self-intersecting TN T T )
inverted CBS. From Figs.(d4) and 4c), we clearly see that -
whency<—1 orcy>c,, the ratiosz(ry)/ry are greater than el
1. In sequence we have a capped cylinder, a prolate ellipsoid, e 0
and a quasisphere with increasifgy|. When |cq| ap- -1 1 2 T3
proaches infinity, the constraimsiny{(r)]<1 means that,

(cf. Fig. 3), must be very small. Thus we have approximately
siny(r)=3cyr for positive and negative,'s, respectively, -1t
using thel.” Hospital method. This implys that we will again (b)
have a sphere. All these shapes are closed, and appear in
intervals ofr including the point =0, which are physically ¢
interesting and are plotted in Fig. 4. Whep<—1 or ¢,
>c¢,, in intervals[r3>0,,] (cf. Fig. 3, we have self-
intersecting nodoidlike cylinders, which are less physically
interesting and which have not been plotted in Fig. 4. As
pointed out in Ref[12], along with the increasingg,|, the
number of self-intersections the in unit length increases, and o~ -
the unit length approaches a quasitoruscgsapproaches.

In fact, when—1<cy=<0, self-intersecting nodoidlike struc-
tures also appear in the intervils>0y,], but, along with
the decreasingc,|, the number of self-intersections in the ~1
unit length increases.

The second ratio is, /rg, in whichr, is defined by the

radius of a sphe_re having the same volurhes a vesicle, FIG. 4. The energythick solid ling, the scale invariantr g
andr ¢ by the radius of a sphere having the same #ea a

. (thin solid line, and two ratiosz(ry)/ro (dashed lingandr, /rg
vesicle. The volume/ and areaA are (dot-dashed ling in three domains—7<c,<-—1.2 (a), —0.98

<¢(=<3.5(b), and 3.6scy=<7 (c) for closed shapes. The bending
elastic moduluk used to scale the energy of a sphere to unit. All

(20 quantities in four curves are dimensionless. In order to see clearly
the fact that a shape with an exclusive valuegé (—,—1) and

fro ; a shape with an exclusive value @fe (c, ,«) are identical except

v

(©

v—4wfr° rr)=2z(0)) |

_ r,
0 cosyr

A=4 dr. (21) that the normals point inward and outward, respectively, in the last

o COSY figure (c) we plot bothcgrg (above thec, axis) and —cqr ¢ (below

) the cy axis) by the same thin solid lines. We can also see that all
Undoubtedly, we have, /r <1, and the equality holds for shapes withcoe (—,—1) andcye(c,,%) have corresponding

the sphere only. The ratio is plotted by dot-dashed lines indentical the shapes witrcoe (—1,0). A single domaincg
Fig. 4. e (—1,,) thus suffices to give all the shapes.
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The scale invariantr s is plotted by thin solid lines in  a,,,, for example, the only nonvanishing,, satisfying
Fig. 4. In Fig. 4c), we plot bothc,r s (above thec, axis) and  |a, o <Ry/2, the ellipsoids hav€™ contour curves. But our
—cof s (below thec, axis) by the same thin solid lines, in ellipsoids have on\C! contour curves, We must stress that
order to see the fact that each shape witha (—~,—1) is  the C! continuity suffices to ensure that the membranes are
identical to a shape withey e (¢, ,), and vice versa. How- free from any force acting on any point. The second deriva-
ever, the normals of shapes parametrized byysin tive of z(r) with respect tar is singular at point =0. One
+cof Inr with cye (¢, ,%°) point inward. From both qualita- may feel uneasy about this singularity. In fact, it relates to
tive and quantitative studies in this section, we can draw thenergy density only, and the total energies (kfZc,+c,
conclusion that all possible closed shapes in the CBS solu-cy)?dA are limited, as shown in Fig. 4. Second, the infi-
tion (8) are, along withcy increasing from—1 to ¢,, a nitely long capped cylinders appear wheg=—1 andc,
capped cylinder, a prolate ellipsoid, a sphere, an oblate ellip=c,, and they correspond to infinite energy states, as shown

soid, a CBS, and a self-intersecting inverted CBS. by thick solid lines in Figs. @) —4(c). From our results, the
phases between the two sides @f=—1 andcy=c, are
V. SCALE INVARIANCE OF THE ENERGY separate. The lattey; distinguishes an oblate ellipsoid phase
AND THE SHAPE WITH MINIMUM ENERGY and a prolate ellipsoid phase; this is the same situation as in

. ... the known phase diagrafil0]. However whenc, changes
An important property of the local curvature energy is its ¢, Co<C, toCy>c, , the normal changes its direction from

scale invariance. This energy does not depend on the size yyyard pointing to inward pointing. It seems that the mem-
the vesicle but only on its shadd0]. If R is a solution 1,06 takes a global flip-flop procedure. However, no such
with a local curvature energy, the rescaled shape procedure takes place wheg changes fromc,< — 1 to ¢,
—R/k with k>0, Zan_d consequently ¢¢,C2,Co,dA) 1 eyen when the transitions are also discontinuous.
—(key kep,kep, dAKY), is also a solution with the same T an interesting number appeared both in our results and
local curvature energy. Two parametrizations of the CBS;,o previous ones,R, = 1.200. We see from Fig.(4) that
solution (8) having manifest scale invariance are whencR,=1.200, whereR,=1 in our parametrization, the

: _ CBS has the minimum energy. In the usual instability analy-
=r/Ry+cor |
SINYAr)=r/Ro* Cor In(r/ro) - and sis of a sphere via an infinitesimal deformation, the infini-
sing(r)=cor In(r/ry), (220  tesimally deformed oblate shape has a lower energy and is

more stable than the infinitesimally deformed prolate one
in which r, is a constant with length unit asor R,. It is ~ WhenevercoRy< —1.2[4].
evident that the two productsyrg and cqr, are two scale
invariants independent of a particularly chosen parametriza-

tion. We used two particular parametrizations, An analytical solution for the Helfrich spontaneous cur-
=r/Ry+cor Inr and sing(r)=cor Inr, to search for the mini- vature membrane mod¢B,11], which has a conspicuous
mum energy shape. Both give the same restdts=1.04  feature of representing the circular biconcave shape, is sys-
andcgr, = 1.00. The minimum energy is 0.480; hereafter wetematically studied in this paper. Results show that the solu-
take the energy of the sphererB, as the energy unit. Sur- tion in fact describes a family of shapes, which can be clas-
prisingly, the CBS with a center touching @=2.4288 has sified as(i) a flat plane(trivial case, (i) a sphere(iii) a
an energy 1.00. In Fig.(8), the thick solid line shows that prolate ellipsoid[Fig. 2(a)], (iv) a capped cylindefFig.
there is an energy minimum shape with=1.200: it is a  2(b)], (v) an oblate ellipsoid Fig. 2(c)], (vi) a CBS[Fig.
CBS. In general, oblate ellipsoids including the CBS have &(d)], (vii) a self-intersecting inverted CBig. 2(e)], and
lower energy than other shapes, including the sphere, th@iii) a self-intersecting nodoidlike cylind¢Fig. 2(f)]. All
prolate ellipsoid, and the self-intersecting inverted CBS.  these shapes have been found in numerical solutions of Eq.
(5) with C=0 [9]. Except for self-intersecting cases, they all

VIl. CONCLUSION

VI. COMPARISON OF OUR RESULTS have real correspondende vitro and in vivo on vesicle
WITH THE PREVIOUS EXPERIMENTAL shapeg§15-17. The closed shapd§)—(vii) form two sepa-
AND THEORETICAL RESULTS rate prolate and oblate ellipsoid branches which are bifur-

i ) ) cated from a sphere. The oblate ellipsoids including the CBS
_ All previous numerical studies concentrated on the solupaye a lower energy than the prolate ellipsoids including the
tion of the equation whe@=0 of Eq.(5), and the obtained gphere, and a CBS with,r,=1.00 has the lowest energy.
shapeq10,1¢ included all eight shapes mentioned above.the ysual instability analysis of a sphere leads to the conclu-
All these eight shapes except the self-intersecting cases ha¥gy that the least stable shapes are prolate and oblate ellip-
been observed in the laboratdd5-17. soid branche$4,18], but to our knowledge this is the first
Since our solution belongs to the situati*0 of EqQ.  time an explicit parametrization has been given to show how

(5), our results coincide with the known theoretical results inghese two branches come out gradually and analytically.
one respect, but differ from in another. First, our approach

supports the conclusion that prolate ellipsoids may have a
higher energy than the oblate ones hat#é However, the
standard instability analysis of a sphere starts from a slightly
deformed sphere of parametrized formr=R, We are indebted to Professor Zheng Wei-Mou for enlight-
+2ZamYim(6,¢), wherea,, is a set of small parameters ening discussions. This work is supported by the National
corresponding to spherical harmoni¥g,(6,¢). For small  Natural Science Foundation of China.
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